【技术前沿】Python替代Excel表格的线性规划配料计算实践
【技术前沿】Python替代Excel表格的线性规划配料计算实践
【技术前沿】Python替代Excel表格的线性规划配料计算实践,零售店会员管理软件,美发会员软件,看片软件会员本文基于冶金工艺人员广泛使用嵌入线性计算公式的Excel表格进行配料计算的工作模式,结合Python编程语言面向对象的友好应用,在Excel配料表基础上,进行功能优化,实现配料操作更加便捷、高效,并对相关功能进行拓展,提出相应的数据分析及可视化功能。首先以烧结配料为例,介绍了python语言对基础配料数据进行处理和计算的过程,然后就相关功能拓展进行了展望论述。
在“碳达峰,碳中和”中长远目标及环保形式严峻、巩固去产能成果的大背景下,钢铁企业转向升级工作从“量变到质变”,从“粗犷到精细”的过程不断深化,并逐步步入“两化融合”的新阶段。铁前区域作为长流程钢铁企业自身优化的成本高地,如何通过精准配料,获取成本优势,是亟待解决的系统性问题,高效、智能的配料计算方式对降低铁前成本具有重要意义。
铁前工艺配料计算目前主要的方式有人工计算、配料软件计算两种方式,人工计算是工艺技术人员通过纯手工计算或者利用嵌入配料机理计算公式的Excel表格进行;配料软件是在结合机理计算,充分考虑铁前生产工艺强耦合性、非线性、大滞后性等特点后,利用线性规划、多目标求解、BP神经网络、粒子群算法(PSO)、遗传算法(GA)等模型或者多算法联合模型开发出的具有高级处理模式和运算能力的人机交互应用系统。两种主流配料方式虽然在求解阈、计算效率、适应程度上有很大不同,但都充分结合了物料平衡、热量平衡以及人工经验,通过设定目标配料值,通过人工调整或者机器学习,不断靠近最优值,在满足产品质量要求下,获得最低配料成本。
本文通过Python系统强大的内置库,利用python进行线性规划配料计算,并对其可能实现的数据可视化及其他智能算法的调用等功能拓展进行初步论述,进而帮助工艺技术人员提高配料作业效率,并作为其提供指导生产的理依据。
Python语言具有简洁性、易读性和可扩展性,高度面向开发对象等特点,方便钢铁企业人员自行学习,其语言逻辑可读性强,能够充分将工艺机理与配料计算结合,其提供的标准库数量强大,能够满足铁前工艺配料要求,在数据可视化、机器学习、数据挖掘方面存在巨大的优势。
线性规划是满足一组等式或者不等式方程约束条件下线性函数极值的统称,其主要包含由决策变量(物料含量)构成的一组目标函数(成本最低);条件约束(物料配比范围);非负约束条件三个方面。以烧结配料为例建立模型如下:
在建设模型之前,首先要了解各种原料价格(Cost,Ci,i=1,2,3……n)以及物料有效成分含量(ai,i=1,2,3……n)。
确定决策变量。在烧结配料过程中,决策变量由参与配料的原料组成,以Xi表示,i为第i种原料,i=1,2,3……n.(参与配料的原料为n种)。
确定目标函数。以配料成本最低(亦可以烧结矿品质最优、能耗最低等为目标函数。设最低配料成本为P,则有:
设置目标烧结矿成分约束(bi)。根据高炉对烧结矿的质量要求,对目标烧结矿成分进行约束,主要包含TFe、CaO、SiO2、Al2O3、MgO等。即:
平衡约束。根据物料守恒定理,建立物料平衡约束。参与配料的物料减去烧结过程烧损之和等于单位烧结矿重量,即:
因烧结配料作业与烧结基础原料检化验在时间上不能够完全吻合,现有的实时在线成分分析系统缺乏,可根据企业自身实际,充分利用铁区MES,将不同批次原料信息,按照生产时间节点,将检验信息导出并放在指定的存储区域,并依据配料计算所需格式(如CSV),将原料信息按指定要求安排表格内容。
MES系统及检化验系统将有效数据按照规定格式存储后,利用python中的xlrd/xlwt模块对配料基础数据进行读取,可实现逐行逐列以及精准坐标读取。即在选定参与配料的原料信息后,可按照物料编码或者名称,在线读取原料信息,参与配料计算。原料基础信息读取过程如下:
可按照原料基础性能,如同化性、熔化性等对原料基础信息进行标注,方便在配料计算时,自动筛选可替代原料选项,并对相应的数据进行调整,如异常数据移除、数据缺失自动填补等。
基于python强大的数据可视化功能,可对原料成分变化、使用频次等数据进行汇总统计,并进一步挖掘数据价值。
将MES及检化验系统获得数据进行相应转换后,按照python线性规划计算公式,对参与配料的原料基础数据进行处理,最终获得最低成本下各个基础物料的配比,并对输出结果进行保存,对不同数量及品种的配料计算,都可使用,可根据实际情况,选择最优结果。
利用python语言开发的烧结智能配料软件具有很强的兼容性,支持Window及Linux双环境下运行,且在目前烧结配料数据量下,运算速度高效,满足配料需要。
在配料基础数据处理满足要求的情况下,可在软件中尝试使用不同的算法模型进行配料计算实践,如BP神经网络、粒子群、遗传算法等,这些智能算法使用python编程语言很容易调取并进行模块封装,为智能算法的在铁前配料的应用提供了便捷的计算机语言平台。
面对激烈的市场竞争,作为长流程钢铁工业“成本高地”的铁前工艺生产优化具有举足轻重的意义,尤其是以低成本配料为核心的工艺优化,将成为提升钢企竞争力、挖掘成本潜力的重中之重。利用python开源、友好、简洁的特点,以及其在智能算法上“高效直接”的优势,方便钢铁企业技术人员将钢铁生产工艺与计算机语言无缝融合,在满足生产工艺要求的同时,实现传统工艺与智能制造的跨界融合!
相关文章
- 影视后期“星工场”梵映如何源源不断为行业输送人才?
- 一体化赋能产业提“智”增效联想边缘计算全方位领跑
- 兼容多终端的会议同屏软件
- 【项目推荐】西安软件园“高新NEWORLD”:软件园甲级企业办公大楼占地3856亩
- 轻松学汉语软件“凤凰汉语”在罗马尼亚受欢迎
- 视频编辑等多个岗位!人民网福建频道实习生招聘启事
- 为什么打开合管家app会闪退
- 阿里平头哥加入 openKylin 开放麒麟社区完成曳影 1520 适配
- 安卓随便换主题!CyanogenMod推Theme应用
- 会计记账软件免费版-破解版汇总
- 爬虫工具会员提醒软件
- 今年前10月山东规上服务业营业收入同比增长94%
- Cinema 4D R20中文激活版v20059 c4d r20永久版三维动画设计渲染软件
- 评文言文翻译软件错误百出:传统文化绝不能技术化
- 成长在德开——德开小学线上教学软件技术融合技巧培训
- 发朋友圈是send a friend circle?雅思口语科技类话题你需要掌握的词汇!
- 2022做工程资料用什么软件比较好 工程资料整理工具排行
- 向日葵远程控制有什么功能?远程控制电脑的用途
- 谷歌翻译走了 盘点那些可以替代它的翻译工具
- 奥比岛手游爷爷珍藏的照片任务完成攻略【详解】